Как определить пропускает ли окно ультрафиолетовый свет


Пропускает ли оконное стекло ультрафиолет?

Среди обычных людей часто возникают споры по одному вопросу: пропускает ли оконное стекло ультрафиолетовый свет. Возникает вопрос от того, что покупатели тревожатся по поводу сохранности вещей от солнечных лучей. Мебель, ковровые покрытия, обои, текстиль — эти детали интерьера и декорирования подвержены выгоранию.

Для начала следует понять, что ультрафиолетовое излучение разделяется на 4 диапазона, а оконное стекло пропускает лучи 1-го типа — с длиной волны от 400 до 315 нм. Их еще называют «мягким излучением». Оконные блоки изготавливаются так, чтобы часть солнечных лучей пропускалась, а часть — отражалась. Задерживаются от проникновения длинные, средние лучи ультрафиолета и длинноволновая часть ближних.

Когда покупатель заказывает окно, то сам выбирает стекла, от которых будет зависеть проницаемость солнечного света. Кварцевое, оргстекло, имеющие высокую пропускную способность, считаются устаревшими и не устанавливаются в оконные блоки.

Механизм действия стекольных поверхностей разделяют на отражающий и поглощающий. Для отражения излучения на поверхность наносят тонкий металлический слой. Таких слоев обычно бывает четыре, а пятым становится слой серебра. Серебро обладает высокими данными пропускать видимый солнечный свет, отражать его невидимое излучение.

При технологии применения шелкографии создаются микропризмы, в них солнечные лучи преломляются, растет светопропускная и отражающая способность.

Виды оконных стекол

Стекла для оконных проемов бывают узорчатыми: цветными или бесцветными. Их поверхность с четким рельефным рисунком. Светопропускная способность таких окошек составляет 30-65%. Данный вид широко используется для декорирования окон и создания витражей.

Отличную устойчивость к ультрафиолетовому свету имеют многослойные стекла. Склеивание двух и более слоев специальной пленкой или ламинирующей жидкостью обеспечивает фотобезопасность таких окон. Многослойные стекла обладают высокой светопропускаемостью — до 85%.

Энергосберегающие — самые широко используемые при изготовлении окон . Эти низкоэмиссионные стекла, для изготовления которых применяются особые технологии сочетания «твердых» и «мягких» покрытий с содержанием свободных электронов. На внутренней стороне поверхности накладывается серебряная пленка, ее может быть до 10 слоев. Окна, благодаря своей эмиссии, отражают длинноволновое излучение солнца, невидимое глазу человека, обладают способностью пропускать свет около 80% и чаще всего используются для остекления жилых домов.

Абсорбирующее, окрашенное в массе стекло может быть окрашено в любой цвет по желанию заказчика. Этот вид стекла является солнцезащитным, так как поглощает энергию света больше, чем обычное. Самым распространенным цветом для окрашивания считается серый и зеленый, а также промежуточный между бронзовым и коричневым. Такое окрашивание-тонирование используется для декоративных целей, так как может иметь узоры на одной из сторон. Этот метод остекления применяется для фасадов и окон.

Солнцезащитные стекла считаются новинкой, применяются для изготовления окон для спальни, комнат, расположенных на солнечной стороне. Стекла, защищающие помещение от длинных инфракрасных излучений, снижают эффект «ослепления» и являются теплоизолирующими. Через них не происходит теплопотеря из помещения. На наружной (уличной) поверхности стекла есть, так называемый, блик, который является солнцеконтролирующим. Поэтому летом в помещениях прохладно, а зимой — тепло. Внешне они не отличаются от обычных.

Самыми дорогими и элитными считаются окна со стеклами повышенной прозрачности. Они не имеют зеленого цвета, при толщине 12 мм обладают светопроницаемостью в 70%. Слои стекла могут использовать при изготовлении толстостенных видов.

Многие производители сочетают во время производства несколько технологий для достижения особого интерьерного и функционального эффекта. У стекол в таких блоках остекления отличные светопропускные, защитные качества, при этом они имеют антибликовые, термозащитные свойства.

Что такое ультрафиолетовый свет? | Живая наука

Ультрафиолет - это тип электромагнитного излучения, которое заставляет светиться плакаты с черным светом и вызывает летний загар и солнечные ожоги. Однако слишком сильное воздействие УФ-излучения вредит живым тканям.

Электромагнитное излучение исходит от Солнца и передается волнами или частицами с разными длинами волн и частотами. Этот широкий диапазон длин волн известен как электромагнитный (ЭМ) спектр. Спектр обычно делится на семь областей в порядке уменьшения длины волны и увеличения энергии и частоты.Обычные обозначения - это радиоволны, микроволны, инфракрасный (ИК), видимый свет, ультрафиолет (УФ), рентгеновские лучи и гамма-лучи.

Ультрафиолетовый (УФ) свет попадает в диапазон ЭМ-спектра между видимым светом и рентгеновскими лучами. Он имеет частоты от 8 × 10 14 до 3 × 10 16 циклов в секунду, или герц (Гц), и длины волн от около 380 нанометров (1,5 × 10 -5 дюймов) до около 10 нм (4 × 10 −7 дюймов). Согласно «Руководству по ультрафиолетовому излучению» ВМС США, УФ обычно делится на три поддиапазона:

  • UVA, или ближний УФ (315–400 нм)
  • UVB, или средний УФ (280–315 нм)
  • УФС, или дальний УФ (180–280 нм)

В руководстве говорится: «Излучение с длинами волн от 10 до 180 нм иногда называют вакуумом или экстремальным УФ."Эти длины волн блокируются воздухом, и они распространяются только в вакууме.

Ионизация

УФ-излучение обладает достаточной энергией, чтобы разорвать химические связи. Из-за своей более высокой энергии УФ-фотоны могут вызывать ионизацию, процесс, в котором отрываются электроны Образовавшаяся вакансия влияет на химические свойства атомов и заставляет их образовывать или разрывать химические связи, которые в противном случае не были бы возможны. Это может быть полезно для химической обработки или может повредить материалы и живые ткани.Это повреждение может быть полезным, например, при дезинфекции поверхностей, но оно также может быть вредным, в частности, для кожи и глаз, на которые наиболее неблагоприятно воздействуют УФ-В и УФ-лучи высокой энергии.

УФ-эффекты

Большинство естественного УФ-излучения, с которым сталкиваются люди, исходит от солнца. Однако, по данным Национальной токсикологической программы (NTP), только около 10 процентов солнечного света - это ультрафиолетовое излучение, и лишь около одной трети этого солнечного света проникает в атмосферу и достигает земли. Из солнечной ультрафиолетовой энергии, которая достигает экватора, 95 процентов - это УФ-А и 5 процентов - УФ-В.Никакое измеримое УФС от солнечного излучения не достигает поверхности Земли, потому что озон, молекулярный кислород и водяной пар в верхних слоях атмосферы полностью поглощают ультрафиолетовые волны самой короткой длины. Тем не менее, "ультрафиолетовое излучение широкого спектра [UVA и UVB] является самым сильным и наиболее разрушительным для живых существ", согласно 13-му отчету NTP по канцерогенным веществам.

Загар

Загар - это реакция на вредные лучи UVB. По сути, загар является результатом срабатывания естественного защитного механизма организма.Он состоит из пигмента под названием меланин, который вырабатывается клетками кожи, называемыми меланоцитами. Меланин поглощает ультрафиолетовый свет и рассеивает его в виде тепла. Когда организм ощущает повреждение от солнца, оно посылает меланин в окружающие клетки и пытается защитить их от новых повреждений. Пигмент вызывает потемнение кожи.

«Меланин - это естественный солнцезащитный крем», - сказал в интервью Live Science Гэри Чуанг, доцент дерматологии медицинского факультета Университета Тафтса. Однако продолжительное воздействие УФ-излучения может подавить защитные силы организма.Когда это происходит, возникает токсическая реакция, приводящая к солнечному ожогу. УФ-лучи могут повредить ДНК в клетках организма. Тело ощущает это разрушение и заливает пораженный участок кровью, чтобы помочь процессу заживления. Также возникает болезненное воспаление. Обычно через полдня после чрезмерного пребывания на солнце характерный для загара вид красного лобстера начинает проявляться и ощущаться.

Иногда клетки с ДНК, мутировавшими под воздействием солнечных лучей, превращаются в проблемные клетки, которые не умирают, но продолжают размножаться в виде рака.«Ультрафиолетовый свет вызывает случайные повреждения ДНК и процесса восстановления ДНК, так что клетки приобретают способность избегать смерти», - сказал Чуанг.

Результат - рак кожи, наиболее распространенная форма рака в Соединенных Штатах. Люди, которые неоднократно получают солнечные ожоги, подвергаются гораздо более высокому риску. По данным Фонда рака кожи, риск самой смертельной формы рака кожи, называемой меланомой, удваивается для тех, кто получил пять или более солнечных ожогов.

Другие источники УФ-излучения

Разработан ряд искусственных источников для получения УФ-излучения.По данным Общества физиков здоровья, «искусственные источники включают кабины для загара, черные фонари, лампы для отверждения, бактерицидные лампы, ртутные лампы, галогенные лампы, разрядные лампы высокой интенсивности, люминесцентные и лампы накаливания, а также некоторые типы лазеров».

Один из наиболее распространенных способов получения ультрафиолетового света - пропускание электрического тока через испаренную ртуть или другой газ. Лампы этого типа обычно используются в соляриях и для дезинфекции поверхностей. Лампы также используются в черном свете, который заставляет светиться флуоресцентные краски и красители.Светоизлучающие диоды (светодиоды), лазеры и дуговые лампы также доступны в качестве источников УФ-излучения с различной длиной волны для промышленных, медицинских и исследовательских приложений.

Флуоресценция

Многие вещества, включая минералы, растения, грибы и микробы, а также органические и неорганические химические вещества, могут поглощать УФ-излучение. Поглощение заставляет электроны в материале переходить на более высокий энергетический уровень. Затем эти электроны могут вернуться на более низкий уровень энергии серией меньших шагов, излучая часть своей поглощенной энергии в виде видимого света.Материалы, используемые в качестве пигментов в красках или красителях, которые проявляют такую ​​флуоресценцию, кажутся ярче под солнечным светом, поскольку они поглощают невидимый УФ-свет и повторно излучают его в видимых длинах волн. По этой причине они обычно используются для знаков, жилетов безопасности и других приложений, в которых важна высокая видимость.

Флуоресценция также может использоваться для обнаружения и идентификации определенных минералов и органических материалов. Согласно Thermo Fisher Scientific, Life Technologies, «флуоресцентные зонды позволяют исследователям обнаруживать отдельные компоненты сложных биомолекулярных структур, таких как живые клетки, с исключительной чувствительностью и селективностью.«

В люминесцентных лампах, используемых для освещения», по данным Университета Небраски, ультрафиолетовое излучение с длиной волны 254 нм производится вместе с синим светом, который излучается, когда электрический ток проходит через пары ртути ». излучение невидимо, но содержит больше энергии, чем излучаемый видимый свет. Энергия ультрафиолетового света поглощается флуоресцентным покрытием внутри люминесцентной лампы и переизлучается в виде видимого света ». Подобные трубки без такого же флуоресцентного покрытия излучают ультрафиолетовый свет, который можно использовать для дезинфекции поверхностей, так как ионизирующее воздействие ультрафиолетового излучения может убить большинство бактерий.

В трубках черного света обычно используются пары ртути для получения длинноволнового УФА-света, вызывающего флуоресценцию некоторых красителей и пигментов. Стеклянная трубка покрыта темно-фиолетовым фильтрующим материалом, который блокирует большую часть видимого света, благодаря чему флуоресцентное свечение кажется более выраженным. Эта фильтрация не требуется для таких приложений, как дезинфекция.

УФ-астрономия

Помимо Солнца, существует множество небесных источников УФ-излучения. По данным НАСА, очень большие молодые звезды излучают большую часть своего света в ультрафиолетовых волнах.Поскольку атмосфера Земли блокирует большую часть этого УФ-излучения, особенно на более коротких длинах волн, наблюдения проводятся с использованием высотных аэростатов и орбитальных телескопов, оснащенных специализированными датчиками изображения и фильтрами для наблюдений в УФ-области электромагнитного спектра.

По словам Роберта Паттерсона, профессора астрономии из Университета штата Миссури, большинство наблюдений проводится с использованием устройств с зарядовой связью (ПЗС), детекторов, чувствительных к коротковолновым фотонам.Эти наблюдения могут определить температуру поверхности самых горячих звезд и выявить наличие промежуточных газовых облаков между Землей и квазарами.

Лечение рака

Хотя воздействие УФ-излучения может привести к раку кожи, по данным Cancer Research UK, некоторые кожные заболевания можно лечить с помощью УФ-излучения. В процедуре, называемой лечением псораленом ультрафиолетовым светом (ПУВА), пациенты принимают лекарство или наносят лосьон, чтобы сделать кожу чувствительной к свету. Затем на кожу попадает ультрафиолетовый свет.ПУВА используется для лечения лимфомы, экземы, псориаза и витилиго.

Может показаться нелогичным лечить рак кожи тем же препаратом, который его вызвал, но ПУВА может быть полезной из-за воздействия ультрафиолетового света на производство клеток кожи. Он замедляет рост, который играет важную роль в развитии болезни.

Ключ к происхождению жизни?

Недавние исследования показывают, что ультрафиолетовый свет мог сыграть ключевую роль в возникновении жизни на Земле, особенно в происхождении РНК.В статье 2017 года в Astrophysics Journal авторы исследования отмечают, что красные карлики могут не излучать достаточно ультрафиолетового света для запуска биологических процессов, необходимых для образования рибонуклеиновой кислоты, необходимой для всех форм жизни на Земле. Исследование также предполагает, что это открытие может помочь в поисках жизни в другом месте Вселенной.

Дополнительные ресурсы

.

UVC | Ультрафиолетовый свет C

Что такое UVC?

UV-C - одна из многих электромагнитных частот, исходящих от солнца. Как и у других форм волны, его свойства уникальны для его длины волны. Чтобы синтезировать эту частоту, из стеклянной трубки откачивают воздух и наполняют ее аргоном при давлении намного ниже атмосферного. К этому добавлено небольшое количество ртути. Когда смесь возбуждается (возбуждена), она создает светящуюся плазму из электронов, которые проходят через пары ртути.Когда они ударяются о атомы ртути, электрон ртути высвобождается с частотой, соответствующей спектральной линии ртути, которая составляет 253,7 нм. Преобладающее излучение (> 90%) этих ламп - это энергия УФ-С. Частота "C" семейства электромагнитных УФ обладает, среди прочего, бактерицидным действием. Это было настолько важно, что Westinghouse быстро коммерциализировала «бактерицидную» лампу низкого давления на парах ртути в начале 1930-х годов. С тех пор его гуманитарная ценность пользуется успехом во всем мире.

Вредно ли УФ-С?

На улице мы подвергаемся воздействию части УФ-спектра.Как правило, чрезмерное УФ-облучение может вызывать неблагоприятные эффекты в зависимости от длины волны, типа и продолжительности, а также различий в реакции на УФ-излучение между людьми. Три основных длины волны:

o UV-C - включает бактерицидную длину волны 253,7 нм и используется для дезинфекции воздуха и воды. Чрезмерное воздействие на человека вызывает временное покраснение кожи и резкое раздражение глаз, но не вызывает необратимых повреждений, рака кожи или катаракты.
o UV-B - более узкая, но более опасная полоса УФ. Продолжительное воздействие было связано с раком кожи, старением кожи и катарактой (помутнением хрусталика глаза).
o UV-A - более преобладает на открытом воздухе, чем два других. Он помогает загореть нашей коже и используется в медицине для лечения некоторых кожных заболеваний. Обычно это безвредная длина волны. UVA, B и C повреждают волокна коллагена и ускоряют старение кожи. Как правило, UVA наименее опасен; UVB способствует повреждению ДНК и раку. Проникает глубоко, но не вызывает солнечных ожогов. Из-за отсутствия покраснения (эритемы) его нельзя измерить при тестировании SPF. Нет хороших клинических данных о блокировании УФ-В, но важно, чтобы солнцезащитные кремы блокировали как УФ-А, так и В.Однако УФС проникает поверхностно и не оказывает длительного воздействия на ткани.

Как это влияет на микробы?

Микроорганизмы представляют собой простые органические структуры, которые легко поглощают длину волны УФ-С, вызывая фотодиссоциацию (разрушение). ДНК микробов (дезоксирибонуклеиновая кислота, в первую очередь, подвергается неблагоприятному воздействию из-за ее более слабых молекулярных связей. За сотые доли секунды она получает непоправимый ущерб. Последующая потеря генетических инструкций вызывает гибель клеток и / или неспособность реплицироваться, что делает их безвредными .Непрерывное воздействие вызывает непрерывную деградацию, такую ​​как солнце, только значительно быстрее.

А работает?

Да, научные и анекдотические ссылки на эффективность УФ-С имеются в большом количестве как в литературе, так и в отчетах о полевых применениях. Из правительственных отчетов наиболее заметными являются NIOSH, OSHA, CDC, GSA, EPA. Наука в общественном форуме исходит от Университета Цинциннати, Университета Талсы, Университета Колорадо и Университета Макгилла (Канада), и это лишь некоторые из них.Две лаборатории, проводящие независимое тестирование и показывающие очень хорошие результаты, - это ARTI и Battelle. Список престижных полевых исследований слишком велик, чтобы его можно было упомянуть. UVC используется во всем мире, больше в других странах на душу населения, чем в США. В значительной степени это более широкое использование предназначено для дезинфекции питьевой воды и очистки сточных вод при очистке сточных вод.

Что означает УФ "C" или УФ "GI"?

Буквы «УФ» относятся к спектру длин волн магнитного поля, известному как ультрафиолетовый свет.Этот спектр чаще всего делится на четыре категории: вакуум, короткие волны, средние волны и длинные волны »или VUV, UVC, UVB и UVA. UVC - это частота, которая является наиболее бактерицидной, а термин UVGI относится к «ультрафиолетовому бактерицидному облучению», используемому федеральными агентствами, такими как OSHA, NIOSH, GSA, EPA и CDC, когда относятся непосредственно к UVC.

Вырабатывают ли УФ-лампы озон?

Нет, но UVC действительно обеспечивает исключительное кондиционирование воздуха так же, как солнце на открытом воздухе.Светильники UVC - это компонент кондиционирования воздуха, который используется в дополнение к другим частям системы. К ним относятся фильтры, змеевик, нагревательный сердечник, вентилятор, заслонки, увлажнители и т. Д. Все они предназначены для выполнения определенной функции при обработке воздуха в жилых помещениях.

Заменяет ли UV-C фильтры?

Нет, светильник UV-C - это компонент системы кондиционирования воздуха, который используется в дополнение к другим частям системы. К ним относятся змеевик, нагревательный сердечник, вентилятор, заслонки, увлажнители, фильтры и т. Д. Все они предназначены для выполнения той или иной работы внутри воздухообрабатывающего устройства. УФ-приспособление является лишь одним из этих компонентов.

Удаляют ли воздушные фильтры микроорганизмы?

Да, в разной степени в зависимости от их номинального КПД. Обратите внимание, что в случае предполагаемого инфекционного заболевания тип, эффективность и расположение фильтра должны иметь большое значение. Что касается микроорганизмов, цель фильтров - снизить общее количество жизнеспособных микробов на «единицу объема воздуха» ниже по потоку. К счастью, некоторые фильтры также можно использовать с UV-C в подходе, называемом «поймать и убить».При правильном фильтре UVC может убить и / или испортить то, что уловил фильтр. Таким образом, для данного микроба и его продуктов эффект фильтров может быть неотъемлемой частью результирующей концентрации в пространстве. Также следует отметить, что размеры вирусов могут составлять всего 0,02 микрона, поэтому необходимо знать целевой организм, чтобы обеспечить предсказуемый результат. Кроме того, фильтрующая система не может сдерживать рост микробов на поверхностях, в дренажных поддонах, вентиляционных камерах и воздуховодах, поэтому УФ-С является лучшим инструментом.

Как вы определяете размеры приложений UV-C?

Для улучшения качества воздуха в помещении, улучшения теплопередачи, уменьшения объема технического обслуживания и неприятных запахов подход, используемый уже более десяти лет, заключается в размещении осевых линий ряда ламп на 30–45-дюймовых осевых линиях. У наиболее уважаемых производителей есть программное обеспечение, которое может определять такие типы установок, и больше. Проконсультируйтесь только с одним из этих уважаемых производителей при определении размеров приложений для возбудителей инфекционных заболеваний.

Трудно ли установить UV-C?

Вовсе нет. Предоставляются простые инструкции по установке вместе с чертежами компоновки, заполненными всеми необходимыми размерами.Появляются разработки продуктов, которые во многих случаях позволяют устанавливать УФ-C в кондиционерах менее чем за час! Это также относится к фанкойлам, унитарным агрегатам и установкам на крыше, которые сложнее всего содержать в чистоте. Проконсультируйтесь с уважаемым заводом, а затем привлекайте его к любым инфекционным заболеваниям.

Где это установлено?

Светильники

UV Resources разработаны специально для установки в системах HVACR и приложениях. В существующем оборудовании часто встречаются микробные заражения. Везде периодически или постоянно образуется влага.Простое тестирование подтверждает это и его возможное исправление. Наилучшие результаты достигаются, когда УФ-С расположен близко к проблемной поверхности. Крепление обычно устанавливается на расстоянии от 6 дюймов до 50 дюймов от облучаемой поверхности. Таким образом, приложение обязательно разрушит и устранит поверхностные и водные загрязнения.

Вы сначала очищаете поверхности?

Результаты, очевидно, более драматичны, когда вы этого не делаете, но на самом деле все сводится к времени. UVC разлагает органический материал на поверхности, а часто и внутри нее, за период времени, уникальный для типа и количества удаляемого материала.Но обычно в течение 180 дней или меньше. Как только загрязняющие вещества станут известны, УФ-ресурсы могут помочь вам принять это решение. Как правило, сначала выполняется очистка, чтобы ускорить процесс очистки. Если загрязнение неизвестно, разумно облучить загрязняющие вещества в течение как минимум 30 дней и полностью одеться, прежде чем разрушать их.

Как узнать, что он работает?

Есть несколько способов продемонстрировать, отобрать или измерить множество происходящих событий. Один из них - использовать контактную пластину, содержащую солодовый агар.Перед установкой UV-C поверхность слегка касается пластиной. Затем инкубируют примерно 96 часов. После установки UV-C процедура повторяется снова на том же месте. Что часто наблюдается, так это снижение роста организма на 98% +? Аналогичным образом можно брать пробы из дренажного поддона и воды, используя другую питательную среду для бактерий. Вот некоторые из других способов:

o Заметное уменьшение плесени можно увидеть за очень короткий период времени.
o Было показано, что падение давления в змеевике падает более чем на 10% менее чем за 30 дней (в зависимости от чистоты поверхности и активности воды), конечно, обычно имеет место соответствующее увеличение воздушного потока и производительности системы.
o Сливные поддоны и вода в сливных поддонах становятся значительно чище.
o Все поверхности, расположенные по линии участка, т.е. изоляция и т. Д., Станут выглядеть намного чище.
o Исчезает большинство запахов, связанных с радиоактивным загрязнением.
o Многие жалобы на качество воздуха в помещении были зарегистрированы как уменьшенные.

Должны ли продукты UV-C быть внесены в списки UL?

Да. Для полной безопасности светильники UVGI должны быть протестированы и внесены в список UL / C-UL в соответствии с кодом категории ABQK (аксессуары, монтируемые в воздуховоде), стандарты UL: 153, 1598 и 1995 соответственно.

Какую гарантию мне ожидать?

Гарантия на светильники должна составлять 3 года, а на лампы - 1 год.

Каковы пределы температуры, влажности и скорости?

Не все продукты UV-C соответствуют спецификациям UL, в том числе влагозащищенная конструкция и надлежащая работа электроники при параметрах 1–77 ° C, как в оборудовании HVAC. По сути, продукты UV Resources не имеют ограничений для HVAC. При этом соблюдаются дополнительные параметры: относительная влажность 99% и 1000 фут / мин соответственно, но свяжитесь с заводом-изготовителем, если ожидаются другие эксплуатационные проблемы.

Как утилизируют отработанные лампы?

В настоящее время большинство пользователей выбрасывают их, как любой стеклянный мусор, например, люминесцентные лампы! Пользователи больших люминесцентных ламп соблюдают директивы EPA и штата, а лампы UV-C подпадают под те же правила. Если у вас есть программа утилизации люминесцентных ламп, УФ-лампы просто попадут в эту же программу.

Следует ли циклически переключать УФ-лампы с вентилятором?

Если принять во внимание все обстоятельства, можно сделать вывод, что они работают постоянно.Кроме того, если учесть характеристики лампы и источника питания, а также их срок службы, они будут работать лучше и дольше при непрерывной работе. Поэтому по возможности запускайте их постоянно.

Когда меняют лампы?

Для приложений с инфекционными заболеваниями замену следует выполнять с использованием выходного измерительного устройства, такого как радиометр, при соблюдении заводских спецификаций и / или рекомендаций. Для контроля качества воздуха в помещении или контроля плесени в крупных установках может быть полезен радиометр, чтобы предотвратить преждевременную замену.Замена ламп при снижении их мощности на 20% - обычное дело, обычно это происходит примерно через 12-15 месяцев. Поэтому при установке без радиометра заменяйте лампу не реже одного раза в год и заменяйте перегоревшую как можно скорее.

Нужна ли чистка ламп?

Лампы

UV Resources обычно разрушают обычные органические частицы, которые могут накапливаться на поверхности трубки; поэтому периодическая чистка обычно не требуется.

Как очищаются лампы при необходимости?

Очистка может потребоваться, если лампа подверглась воздействию жесткой воды в любой форме, большого количества влажных органических частиц или любого вида масла (т.е. масло для тела). Уксус можно использовать для удаления минеральных отложений, Windex - для влажного органического мусора и чистого спирта, а ткань без ворса - для масла. Обычные чистящие средства должны работать нормально, если не оставляют следов.

Что делать, если микробы прикреплены к частицам пыли?

В системах HVAC вызывающие беспокойство микробы либо находятся на поверхности, либо переносятся по воздуху. УФ-излучение обычно разрушает простые органические материалы, такие как частицы пыли, на поверхности, чтобы показать целевой микроб и уничтожить его.Микробы, переносимые по воздуху, не могут быть скрыты как минимум двумя способами. Большая часть пыли удаляется системой фильтрации до того, как микроб попадает в полость УФ-С. И / или частицы пыли падают или падают в воздушном потоке, что обеспечивает глобальное облучение почти на 360 °, что приводит к поглощению энергии УФ-С в достаточном количестве. В установках, предназначенных для конкретных инфекционных заболеваний, следует использовать воздушные фильтры с эффективностью более 85% по шкале ASHRAE Dust Spot, чтобы не только было минимальное количество пыли, но и многие микробы не могли пройти сквозь них.

Что такое инактивация?

Для плесени и бактерий дозы энергии УФС могут не вызывать немедленной гибели клеток, но микроб может быть «инактивирован». Это означает, что, хотя некоторая биологическая активность все еще может существовать, репликация клеток невозможна; микроб больше не жизнеспособен. Просто рассматриваемый микроб не может размножаться, что делает его безвредным! Более того, было показано, что небольшие дозы УФ-С со временем ускоряют гибель клеток. Поскольку вирусные частицы не являются формой жизни, мы полагаемся исключительно на инактивацию, чтобы избавиться от нависшего над ними вреда.

Что я увижу, если я не вижу энергии УФС?

Около 90% энергии, вырабатываемой лампой УФ-С, фактически составляет энергия УФС. Остальное - видимый свет (синий оттенок) и небольшое количество инфракрасного (тепло). Учитывая яркость УФ-ламп, эти 3-4% видимого света дают представление о количестве энергии УФ-С, производимой лампой.

Если я вижу синий цвет, лампа работает?

Необязательно, синий цвет возникает из-за инертного газа внутри лампы, который не выделяет ультрафиолетового излучения.Лампа может гореть (синяя), но при этом не выделять много энергии УФ-С, если она вообще есть. Это был бы плохой показатель.

Убивает ли УФС пылевых клещей?

Нет никаких доказательств того, что доза УФ-С, подходящая для уничтожения данного микроба, вообще окажет какое-либо влияние на пылевых клещей. Очень высокая энергия УФ-С или длительное воздействие УФ-С должно нарушить некоторые биологические функции клеща, что может привести к смерти. Однако нигде нет свидетельств того, что пылевые клещи обитают в воздуховодах кондиционера.

Нужен ли мне УФС, если я использую фильтры с антимикробной обработкой?

Некоторые микробы, которые улавливаются фильтрами, обработанными антимикробными средствами, действительно умирают.Но есть еще много лет доказательств и независимых тестов, которые показывают, что микробы, пойманные неочищенными фильтрами, также умирают! Исключением в обоих случаях является плесень на влажных фильтрах, которая характеризуется отчетливым запахом? Однако ничто из этого не препятствует многолетним свидетельствам того, что просто количество микробов всегда ниже по потоку от любого фильтра по сравнению с выше по потоку. Фильтры никоим образом не препятствуют росту микроорганизмов на других поверхностях и в сливных поддонах; все это в конечном итоге приводит к накоплению органических материалов.В этом последнем и более важном вопросе УФ-С является единственной нехимической формой постоянного контроля источника.

Может ли UVC экономить энергию?

Да, буквально в тысячах контролируемых испытаний наросты органических материалов на змеевиках были удалены с помощью УФ-С, чтобы обеспечить два возможных результата: 1. Падение давления в змеевике уменьшается, что увеличивает поток воздуха. 2. увеличивается разность температур выходящего воздуха по смоченному термометру. Таким образом, экономия энергии достигается за счет увеличения поглощения (передачи) тепла, уменьшения мощности воздушного потока (или увеличения объема воздуха) и / или сокращения времени работы, в том числе на конденсаторе.Эти сокращения и увеличения всегда проявляются в той или иной форме работы по энергосбережению.

Влияют ли биопленки на характеристики змеевика?

В опубликованных статьях документируется, что эффективность поверхностного теплообмена теряется до 30% из-за накопления органических материалов? Кроме того, большое количество чистящих составов для змеевиков и производители «запасных змеевиков», как правило, свидетельствуют о распространенности этой проблемы. Брайан Крафтхефер из Honeywell лучше всех публикуется в этой области.

Что делать, если я не вижу плесени на катушке и т. Д.?

Даже небольшое визуальное появление плесени потребует миллионов этих микроорганизмов на квадратный дюйм, и большая часть из них обычно представляет собой питательные вещества, содержащие плесень; который всегда считался простой грязью. Кроме того, большее количество этого материала может находиться внутри катушки, а не на ее видимой поверхности. Фактически, некоторые из наиболее заметных проблем с качеством воздуха в помещении возникли в так называемом сухом климате, где не было видимой грязи или микробной активности.

Можно ли установить UVC на крышах домов или в наружных блоках?

Светильники

NEMA с односторонними лампами были разработаны специально для крыш и других наружных систем, они удивительно доступны по цене и просты в установке.

Можно ли устанавливать UVC в небольших установках?

Да, блочные вентиляторы, тепловые насосы, фанкойлы и т. Д. Являются критически важными кандидатами для УФС, поскольку они часто являются самыми грязными, наиболее неэффективными и проблемными системами для обеспечения качества воздуха в помещении. Цены недавно снизились.

Может ли УФ-С убить 100% всех микроорганизмов, переносимых по воздуху?

Обычно нет, хотя более важным является очень большое сокращение количества из-за использования УФ-С. CDC - хороший пример того, что UV-C является наиболее совершенным, а иногда и единственным выбором для выполнения работы.Не менее важно, что УФ-С ничего не оставляет позади, как другие методы!

Дорогой ли UVC?

Больше не будет, поскольку они меньше 0,04 доллара за куб. Таким образом, затраты на потерю эффективности теплообмена; таблетки для очистки поверхностей и дренажного поддона уже превышают эту стоимость. Тем не менее, исключаются рутинная работа, простои, обслуживание жалоб и, самое главное, прогулы и судебные тяжбы. Затраты на потерю работы, игры и дружеских отношений; или даже чистка воздуховодов и замена системы даже не учитываются.Сменных ламп пока гораздо меньше.

Как домовладелец узнает, когда менять лампы?

В настоящее время нет точных или доступных способов, поэтому промышленным стандартом для замены ламп был один год. Лучший месяц - апрель, чтобы в летние месяцы была самая свежая лампа.

Почему мы много слышали о биоаэрозолях?

Потому что это основной компонент плохого качества воздуха в помещении. Научным исследователем, популяризировавшим слово «биоаэрозоль», является доктор Харриет Бердж. Ее позиция заключалась и остается тем, что на биоаэрозоли приходится большая часть проблемы качества воздуха в помещении, чем предполагалось.Тот факт, что она была права тогда и сейчас, является одной из причин популярности UV-C.

Биоаэрозоли - большая проблема сейчас?

Без вопросов, и по многим причинам. Сегодня в системе HVAC мы обнаруживаем больше микробной активности, чем в прошлые годы. Некоторые причины касаются наших процедур эксплуатации и технического обслуживания. Например, работа часов (отключение системы кондиционирования - для экономии энергии) усугубляет рост микробов. Во время этих остановок на 8–12 часов и в выходные дни достигается более высокая температура поверхности и жидкости.Эти более теплые, но все же влажные змеевики и сливные поддоны - идеальные форумы для микробов. К этому добавляется то, что эти области не убираются так часто, как раньше (еда). Обратите внимание, что когда они есть, хлорированные соединения были запрещены, поэтому их современные заменители в основном представляют собой инертные ингредиенты; или плесень! Можно представить себе возрастающую проблему.

Можно ли использовать продукты UV Resources при 50 Гц A / C?

Да, все наши варианты напряжения могут работать, поскольку их работа полностью не зависит от частоты сети.

Используется ли УФ-С для лечения туберкулеза?

Да. У нас есть другие материалы для чтения по этой теме. Пожалуйста, перейдите по этой ссылке для получения дополнительной информации.

Для получения дополнительной информации посетите любой из следующих сайтов:

CDC Руководство по борьбе с туберкулезом
Международная ассоциация ультрафиолетовых лучей
Ультрафиолетовое излучение для очистки змеевиков в школе
Стандарты GSA для общественных зданий (секция машиностроения)
CDC Качество воздуха в помещении по штатам
UVC Energy: как это работает?

.

Что такое видимый свет? | Живая наука

Видимый свет - это форма электромагнитного (ЭМ) излучения, а также радиоволны, инфракрасное излучение, ультрафиолетовое излучение, рентгеновские лучи и микроволны. Как правило, видимый свет определяется как длина волны, видимая большинством человеческих глаз.

ЭМ излучение передается волнами или частицами с разными длинами волн и частотами. Этот широкий диапазон длин волн известен как электромагнитный спектр. Этот спектр обычно делится на семь областей в порядке уменьшения длины волны и увеличения энергии и частоты.Обычные обозначения - это радиоволны, микроволны, инфракрасный (ИК), видимый свет, ультрафиолет (УФ), рентгеновские лучи и гамма-лучи.

Видимый свет находится в диапазоне электромагнитного спектра от инфракрасного (ИК) до ультрафиолетового (УФ). Он имеет частоты от 4 × 10 14 до 8 × 10 14 циклов в секунду, или герц (Гц), и длину волны около 740 нанометров (нм) или 2,9 × 10 -5 дюймов, до 380 нм ( 1,5 × 10 −5 дюймов).

Цвет

Возможно, самая важная характеристика видимого света - это цвет.Цвет - это неотъемлемое свойство света и артефакт человеческого глаза. По словам Гленна Элерта, автора веб-сайта The Physics Hypertextbook, объекты не имеют цвета. Скорее они испускают свет, который «кажется» цветом. Другими словами, пишет Элерт, цвет существует только в сознании смотрящего.

Наши глаза содержат специализированные клетки, называемые колбочками, которые действуют как приемники, настроенные на длины волн этого узкого диапазона электромагнитного спектра, согласно веб-сайту NASA Mission Science.Свет в нижней части видимого спектра, имеющий более длинную волну, около 740 нм, виден как красный; свет в середине спектра виден зеленым; а свет в верхнем конце спектра с длиной волны около 380 нм виден как фиолетовый. Все остальные цвета, которые мы воспринимаем, представляют собой смеси этих цветов.

Например, желтый содержит и красный, и зеленый; голубой - это смесь зеленого и синего, а пурпурный - это смесь красного и синего. Белый свет сочетает в себе все цвета.Черный - полное отсутствие света. Первым, кто осознал, что белый свет состоит из цветов радуги, был Исаак Ньютон, который в 1666 году пропускал солнечный свет через узкую щель, а затем через призму, чтобы проецировать цветной спектр на стену, по словам Майкла Фаулера, физика. профессор Университета Вирджинии.

Цвет и температура

По мере того, как объекты становятся горячее, они излучают энергию, в которой преобладают более короткие волны, которые мы воспринимаем как изменение цвета, согласно НАСА.Например, пламя паяльной лампы меняется с красноватого на синее, когда оно настраивается на более горячее. Этот процесс превращения тепловой энергии в энергию света называется накаливанием, согласно веб-сайту Института динамического развития образования WebExhibits.org.

Лампа накаливания возникает, когда горячее вещество выделяет часть своей энергии тепловых колебаний в виде фотонов. При температуре около 800 градусов по Цельсию (1472 градуса по Фаренгейту) энергия, излучаемая объектом, достигает инфракрасного диапазона.При повышении температуры энергия перемещается в видимый спектр, и объект, кажется, имеет красноватое свечение. По мере того, как объект нагревается, его цвет меняется на «раскаленный добела», а затем на синий.

Астрономия в видимом свете

Согласно IDEA, цвет горячих объектов, таких как звезды, можно использовать для оценки их температуры. Например, температура поверхности Солнца составляет около 5 800 Кельвинов (9 980 F или 5 527 C). Излучаемый свет имеет максимальную длину волны около 550 нм, которую мы воспринимаем как видимый белый свет (или слегка желтоватый).

По данным НАСА, если бы температура поверхности Солнца была ниже, около 3000 ° C, она выглядела бы красноватой, как звезда Бетельгейзе. Если бы она была горячее, около 12000 ° C, она выглядела бы синей, как звезда Ригель.

Астрономы также могут определять, из каких объектов состоят объекты, потому что каждый элемент поглощает свет на определенных длинах волн, называемых спектром поглощения. Зная спектры поглощения элементов, астрономы могут использовать спектроскопы для определения химического состава звезд, пылевых облаков и других далеких объектов.

Дополнительные ресурсы

.

16.15: Конъюгированные диены и ультрафиолетовый свет

Электромагнитное излучение, такое как видимый свет, обычно рассматривается как явление волны, характеризующееся длиной или частотой волны. Длина волны определяется слева внизу, как расстояние между соседними пиками (или впадинами), и может быть обозначена в метрах, сантиметрах или нанометрах (10 -9 метров). Частота - это количество волновых циклов, которые проходят за фиксированную точку за единицу времени, и обычно указывается в циклах в секунду или герцах (Гц).Видимые длины волн покрывают диапазон примерно от 400 до 800 нм. Самая длинная видимая длина волны - красная, самая короткая - фиолетовая. Другие распространенные цвета спектра в порядке убывания длины волны можно запомнить с помощью мнемоники: ROY G BIV . Длины волн того, что мы воспринимаем как определенные цвета в видимой части спектра, отображаются и перечислены ниже. На горизонтальных диаграммах, например, в нижнем левом углу, длина волны будет увеличиваться при перемещении слева направо.

  • Фиолетовый: 400–420 нм
  • Индиго: 420–440 нм
  • Синий: 440–490 нм
  • Зеленый: 490–570 нм
  • Желтый: 570 - 585 нм
  • Оранжевый: 585 - 620 нм
  • Красный: 620 - 780 нм

Когда белый свет проходит через окрашенное вещество или отражается от него, характерная часть смешанных длин волн поглощается.Оставшийся свет примет дополнительный цвет к поглощаемой длине волны. Это соотношение демонстрируется цветовым кругом, показанным ниже. Здесь дополнительные цвета диаметрально противоположны друг другу. Таким образом, поглощение света 420–430 нм делает вещество желтым, а поглощение света 500–520 нм делает его красным. Зеленый уникален тем, что он может быть создан за счет поглощения около 400 нм, а также поглощения около 800 нм.

Древние люди ценили цветные пигменты и использовали их в декоративных целях.Многие из них были неорганическими минералами, но было также известно несколько важных органических красителей. К ним относятся малиновый пигмент, кермезиновая кислота, синий краситель индиго и желтый шафрановый пигмент кроцетин. Редкое производное дибром-индиго, пуицин, использовалось для окраски одежд королевской семьи и богатых. Углеводородный каротин темно-оранжевого цвета широко распространен в растениях, но недостаточно стабилен, чтобы его можно было использовать в качестве стойкого пигмента, за исключением пищевого красителя. Общей чертой всех этих цветных соединений, показанных ниже, является система из сильно сопряженных \ (\ pi \) - электронов .

Электромагнитный спектр

Видимый спектр составляет лишь небольшую часть всего спектра излучения. Большую часть излучения, которое нас окружает, нельзя увидеть, но можно обнаружить специальными измерительными приборами. Этот электромагнитный спектр имеет диапазон от очень коротких длин волн (включая гамма и рентгеновские лучи) до очень длинных волн (включая микроволны и радиоволны вещания). Следующая диаграмма отображает многие важные области этого спектра и демонстрирует обратную зависимость между длиной волны и частотой (показанная в верхнем уравнении под диаграммой).

Энергия, связанная с данным сегментом спектра, пропорциональна его частоте. Нижнее уравнение описывает это соотношение, которое дает энергию, переносимую фотоном с заданной длиной волны излучения.

Для получения конкретных значений частоты, длины волны и энергии используйте этот калькулятор.

УФ-видимые спектры поглощения

Чтобы понять, почему одни соединения окрашены, а другие нет, а также для определения отношения конъюгации к цвету, мы должны провести точные измерения поглощения света на разных длинах волн в видимой части и вблизи нее. спектр.Коммерческие оптические спектрометры позволяют легко проводить такие эксперименты и обычно исследуют как ближнюю ультрафиолетовую, так и видимую части спектра. Чтобы получить описание спектрометра УФ-видимого диапазона, щелкните здесь.

Видимая область спектра включает энергии фотонов от 36 до 72 ккал / моль, а ближняя ультрафиолетовая область до 200 нм расширяет этот диапазон энергий до 143 ккал / моль. Ультрафиолетовое излучение с длинами волн менее 200 нм трудно обрабатывать, и оно редко используется в качестве обычного инструмента для структурного анализа.

Указанных выше энергий достаточно для продвижения или возбуждения молекулярного электрона на орбиталь с более высокой энергией. Следовательно, абсорбционная спектроскопия, проводимая в этой области, иногда называется «электронной спектроскопией». Слева показана диаграмма, показывающая различные виды электронного возбуждения, которые могут возникать в органических молекулах. Из шести обрисованных в общих чертах переходов только два с наименьшей энергией (крайний левый, окрашенный в синий цвет) достигаются за счет энергий, доступных в спектре от 200 до 800 нм.Как правило, энергетически выгодное продвижение электронов будет происходить с самой высокой занятой молекулярной орбитали (HOMO) на самую низкую незанятую молекулярную орбиталь (LUMO), и полученная в результате разновидность называется возбужденным состоянием . Для обзора молекулярных орбиталей щелкните здесь.

Когда молекулы образца подвергаются воздействию света, имеющего энергию, которая соответствует возможному электронному переходу внутри молекулы, часть световой энергии будет поглощаться, когда электрон продвигается на орбиталь с более высокой энергией.Оптический спектрометр регистрирует длины волн, на которых происходит поглощение, а также степень поглощения на каждой длине волны. Результирующий спектр представлен в виде графика зависимости поглощения (A) от длины волны, как в спектре изопрена, показанном ниже. Поскольку изопрен бесцветен, он не поглощает видимую часть спектра, и эта область не отображается на графике. Поглощение обычно находится в диапазоне от 0 (нет поглощения) до 2 (99% поглощения) и точно определяется в контексте работы спектрометра.

Электронные переходы

Давайте рассмотрим в качестве первого примера простой случай молекулярного водорода, H 2 . Как вы, возможно, помните из раздела 2.1A, молекулярная орбитальная картина для молекулы водорода состоит из одной связывающей σ МО и разрывающей связи σ * MO с более высокой энергией. Когда молекула находится в основном состоянии, оба электрона спарены на связывающей орбитали с более низкой энергией - это самая высокая занятая молекулярная орбиталь (HOMO). Разрыхляющая σ * -орбиталь, в свою очередь, является самой низкой незанятой молекулярной орбиталью (НСМО).

Если на молекулу воздействовать светом с длиной волны, равной Δ E, энергетической щели HOMO-LUMO, эта длина волны будет поглощена, а энергия, используемая для удара одного из электронов из HOMO, будет НСМО - другими словами, от σ до орбитали σ *. Это называется переходом σ - σ * . Δ E для этого электронного перехода составляет 258 ккал / моль, что соответствует свету с длиной волны 111 нм.

Когда молекула с двойной связью, такая как этен (обычное название этилен), поглощает свет, она претерпевает переход π - π *. Поскольку энергетические зазоры π- π * уже, чем зазоры σ - σ * , этен поглощает свет с длиной волны 165 нм - более длинной волны, чем молекулярный водород.

Электронные переходы как молекулярного водорода, так и этена слишком велики, чтобы их можно было точно зарегистрировать стандартными УФ-спектрофотометрами, которые обычно имеют диапазон 220-700 нм.УФ-видимая спектроскопия становится полезной для большинства химиков-органиков и биологов при изучении молекул с сопряженными пи-системами. В этих группах энергетическая щель для π -π * переходов меньше, чем для изолированных двойных связей, и, следовательно, длина поглощаемой волны больше. Молекулы или части молекул, которые сильно поглощают свет в УФ-видимой области, называются хромофорами .

Давайте вернемся к МО-картине 1,3-бутадиена, простейшей сопряженной системы (см. Раздел 2.1Б). Напомним, что мы можем нарисовать диаграмму, показывающую четыре МО Пи, которые возникают в результате объединения четырех атомных орбиталей 2p z . Две нижние орбитали связывают, а две верхние - разрыхляют.

Сравнивая эту МО-картину с этеном, нашим примером изолированной пи-связи, мы видим, что запрещенная зона HOMO-LUMO действительно меньше для сопряженной системы. 1,3-бутадиен поглощает УФ-свет с длиной волны 217 нм.

По мере того, как сопряженные пи-системы становятся больше, энергетическая щель для перехода π - π * становится все более узкой, и длина волны поглощенного света соответственно увеличивается.Поглощение из-за перехода π - π * в 1,3,5-гексатриене, например, происходит при 258 нм, что соответствует величине Δ E, равной 111 ккал / моль.

В молекулах с протяженными пи-системами энергетическая щель ВЗМО-НСМО становится настолько малой, что поглощение происходит в видимой, а не в УФ-области электромагнитного спектра. Бета-каротин с его системой из 11 сопряженных двойных связей поглощает свет с длинами волн в синей области видимого спектра, позволяя пропускать другие длины волн видимого света, в основном в красно-желтой области.Вот почему морковь оранжевого цвета.

Конъюгированная пи-система в 4-метил-3-пентен-2-оне вызывает сильное УФ-поглощение при 236 нм из-за перехода π - π *. Однако эта молекула также поглощает на длине волны 314 нм. Это второе поглощение связано с переходом несвязывающего электрона (неподеленной пары) на кислород до π * разрыхляющей МО:

Это называется переходом n - π * . Несвязывающие (n) МО имеют более высокую энергию, чем самые высокие связывающие p-орбитали, поэтому запрещенная зона для перехода n - π * меньше, чем у перехода π - π *, и, таким образом, пик n - π * находится на более длинная длина волны.В общем, переходы n - π * слабее (меньше поглощается светом), чем переходы, обусловленные переходами π - π *.

Упражнение 4.3 : Насколько велик переход π - π * в 4-метил-3-пентен-2-оне?

Упражнение 4.4 : Какие из следующих молекул вы ожидаете, что они будут поглощать на более длинных волнах в УФ области электромагнитного спектра? Поясните свой ответ.

.

Смотрите также